~~CLOSETOC~~ |<100% 25% - >| ^ \\ 3D PRINTING AND DESIGN REFERENCE DOCUMENT\\ \\ ^^ ^ Document Title:|Create SVG files using Python| ^ Document No.:|1729077206| ^ Author(s):|jattie| ^ Contributor(s):|[[https://www.printables.com/@yba2cuo3_12119|yba2cuo3]] | **REVISION HISTORY** |< 100% 10% - - 10% 17% 10% >| ^ \\ Revision\\ \\ ^\\ Details of Modification(s)^\\ Reason for modification^ \\ Date ^ \\ By ^ | [[:doku.php?id=03_designing_for_3d_printing:02_design_with_svg&do=revisions|0]] |Draft release|How to exploit the power of SVG's in 3D designs.| 2024/10/16 11:13 | jattie | ---- ====== Design generating SVG's with Python ====== SVG's(Scalable Vector Graphics) are very powerful in designs because of the scalability. Any existing logo or image can be converted to a .svg and as I recently discovered during a conversation with [[https://www.printables.com/@yba2cuo3_12119|@yba2cuo3]] on printables, there are very cool svg libraries available in python to exploit and generate sophisticated and intricate details for 3D designs. This page aims to showcase this use case. ===== Create a SVG using Python code ===== The idea was inspired by the [[https://www.printables.com/model/998688-heliochronometer-worlds-most-accurate-sundial|Heliochronometer project on printables]] and discussions with the designer on the faceplates and dual colour designs. The majority of the code was generated in copilot and then adjusting the parameters until to get a similar faceplate dial in the svg as can be seen in the original design. **My initial prompt to copilot was:**\\ create python code to generate a 24hour sundial face with roman numerals, hour line, half hour lines, 15 minute and 5 minute lines at varying lengths and produce an svg import svgwrite from math import cos, sin, pi def create_custom_sundial_face(): # Create an SVG drawing dwg = svgwrite.Drawing('custom_sundial_face.svg', profile='tiny', size=(500, 500)) # Center of the sundial center_x = 250 center_y = 250 radius = 160 # Draw the outer circle with a decorative border dwg.add(dwg.circle(center=(center_x, center_y), r=radius, stroke='black', fill='none', stroke_width=5)) # Function to draw lines def draw_line(angle, length, color='black', stroke_width=1): x1 = center_x + radius * (1 - length) * cos(angle) y1 = center_y + radius * (1 - length) * sin(angle) x2 = center_x + radius * cos(angle) y2 = center_y + radius * sin(angle) dwg.add(dwg.line(start=(x1, y1), end=(x2, y2), stroke=color, stroke_width=stroke_width)) # Function to draw text def draw_text(angle, text, radius_offset=10): x = center_x + (radius + radius_offset) * cos(angle) y = center_y + (radius + radius_offset) * sin(angle) + 0 # Adjust y coordinate for vertical alignment rotation_angle = angle * 180 / pi + 90 # Convert radians to degrees and adjust for vertical alignment #dwg.add(dwg.text(text, insert=(x, y), text_anchor="middle", font_size="12px", font_family="Roman")) dwg.add(dwg.text(text, insert=(x, y), text_anchor="middle", font_size="12px", font_family="Verdana", font_weight='bold', transform=f"rotate({rotation_angle},{x},{y})")) # Draw 5-minute lines for five_minute in range(288): if five_minute % 12 == 0: continue angle = (five_minute / 288) * 2 * pi - pi / 2 draw_line(angle, 0.05)#, color='purple') # Draw 15-minute lines for quarter_hour in range(96): if quarter_hour % 4 == 0: continue angle = (quarter_hour / 96) * 2 * pi - pi / 2 draw_line(angle, 0.08)#, color='red') # Draw half-hour lines for half_hour in range(48): if half_hour % 2 == 0: continue angle = (half_hour / 48) * 2 * pi - pi / 2 draw_line(angle, 0.10)#, color='green') # Draw hour lines and Roman numerals with custom colors for hour in range(24): angle = (hour / 24) * 2 * pi - pi / 2 draw_line(angle, 0.15, stroke_width=2)#, color='blue') roman_numeral = ["XII", "I", "II", "III", "IIII", "V", "VI", "VII", "VIII", "IX", "X", "XI"][hour % 12] if hour >= 12: roman_numeral #+= " PM" else: roman_numeral #+= " AM" draw_text(angle, roman_numeral) # Save the SVG file dwg.save() # Create the custom sundial face SVG create_custom_sundial_face() print("The custom sundial face SVG has been created and saved as 'custom_sundial_face.svg'.") The result of the above code looks like this. {{ :03_designing_for_3d_printing:custom_sundial_face.svg |}} This is the SVG file, right click this to download directly for use. import svgwrite import math # Create a canvas of 200mm x 200mm #conda install dwg = svgwrite.Drawing('circle_with_dividers_and_numerals.svg', profile='tiny', size=('200mm', '200mm')) # Create a canvas of 200mm x 200mm with units set to millimeters dwg = svgwrite.Drawing('circle_with_dividers_and_numerals.svg', profile='full', size=('200mm', '200mm'), viewBox=('0 0 200 200')) # Draw a circle in the middle with a diameter of 140mm and 2mm wide circle_center = (100, 100) circle_radius = 70 dwg.add(dwg.circle(center=circle_center, r=circle_radius, stroke='black', fill='none', stroke_width=2)) # Function to create equal divider lines around the inner circumference of the circle def create_divider_lines(dwg, center, radius, num_lines, line_length, line_width): angle_step = 360 / num_lines center_x, center_y = center for i in range(num_lines): angle = math.radians(i * angle_step) start_x = center_x + (radius - line_width / 2) * math.cos(angle) start_y = center_y + (radius - line_width / 2) * math.sin(angle) end_x = center_x + (radius - line_width / 2 - line_length) * math.cos(angle) end_y = center_y + (radius - line_width / 2 - line_length) * math.sin(angle) dwg.add(dwg.line(start=(start_x, start_y), end=(end_x, end_y), stroke='black', stroke_width=line_width)) # Function to add Roman numerals around the outer circumference of the circle def add_roman_numerals(dwg, center, radius, num_numerals): roman_numerals = ["I", "II", "III", "IV", "V", "VI", "VII", "VIII", "IX", "X", "XI", "XII"] roman_numerals = roman_numerals*2 angle_step = 360 / num_numerals center_x, center_y = center for i in range(num_numerals): angle = math.radians(i * angle_step - 90) # Adjust angle to start from the top text_x = center_x + radius * math.cos(angle) text_y = center_y + radius * math.sin(angle) #dwg.add(dwg.text(roman_numerals[i % len(roman_numerals)], insert=(text_x, text_y + 3), text_anchor="middle", font_size="10pt")) rotation_angle = i * angle_step dwg.add(dwg.text(roman_numerals[i % 24], insert=(text_x, text_y + 0), text_anchor="middle", font_size="8pt", transform=f"rotate({rotation_angle} {text_x},{text_y + 0})")) # Use the function to create 24 divider lines of 18mm long and 1mm wide create_divider_lines(dwg, circle_center, circle_radius, 24, 10, 0.8) create_divider_lines(dwg, circle_center, circle_radius, 24*2, 7, 0.8) create_divider_lines(dwg, circle_center, circle_radius, 24*4, 6, 0.4) create_divider_lines(dwg, circle_center, circle_radius, 24*12, 4, 0.4) # Add one set of Roman numerals around the outer circumference of the circle add_roman_numerals(dwg, circle_center, circle_radius + 3, 24) # Save the SVG file dwg.save(pretty=True, indent=2) print("SVG saved: 'circle_with_dividers_and_numerals.svg'") ===== How to use the SVG in Fusion360 ===== At the moment there is some fusion specific issue encountered importing the python generated SVG. It seems related to scaling and coordinate calculations. I suspect them to also be related to radians. {{:03_designing_for_3d_printing:screenshot_2024-10-17_091637.png?nolink|}}